On supermatrix idempotent operator semigroups
نویسنده
چکیده
One-parameter semigroups of antitriangle idempotent supermatrices and corresponding superoperator semigroups are introduced and investigated. It is shown that t-linear idempotent superoperators and exponential superoperators are mutually dual in some sense, and the first gives additional to exponential solution to the initial Cauchy problem. The corresponding functional equation and analog of resolvent are found for them. Differential and functional equations for idempotent (super)operators are derived for their general t power-type dependence. E-mails: [email protected] and [email protected] Internet: http://gluon.physik.uni-kl.de/~duplij
منابع مشابه
Free profinite locally idempotent and locally commutative semigroups
This paper is concerned with the structure of semigroups of implicit operations on the pseudovariety LSl of finite locally idempotent and locally commutative semigroups. We depart from a general result of Almeida and Weil to give two descriptions of these semigroups: the first in terms of infinite words, and the second in terms of infinite and bi-infinite words. We then derive some applications...
متن کاملExpansions of Inverse Semigroups
We construct the freest idempotent-pure expansion of an inverse semigroup, generalizing an expansion of Margolis and Meakin for the group case. We also generalize the Birget-Rhodes prefix expansion to inverse semigroups with an application to partial actions of inverse semigroups. In the process of generalizing the latter expansion, we are led to a new class of idempotent-pure homomorphisms whi...
متن کاملOn Alternative Supermatrix Reduction
We consider a nonstandard odd reduction of supermatrices (as compared with the standard even one) which arises in connection with possible extension of manifold structure group reductions. The study was initiated by consideration of the generalized noninvertible superconformal-like transformations. The features of evenand oddreduced supermatrices are investigated on a par. They can be unified i...
متن کاملRadical decompositions of semiheaps
Semiheaps are ternary generalisations of involuted semigroups. The first kind of semiheaps studied were heaps, which correspond closely to groups. We apply the radical theory of varieties of idempotent algebras to varieties of idempotent semiheaps. The class of heaps is shown to be a radical class, as are two larger classes having no involuted semigroup counterparts. Radical decompositions of v...
متن کاملFactorisability in certain classes over inverse semigroups
In the structure theory of inverse semigroups, there are two approaches, basically from the 1970’s, to build up inverse semigroups from semilattices and groups via their semidirect products. These approaches are dual to each other in the sense that one produces any inverse semigroup from a semidirect product of a semilattice by a group by taking an idempotent separating homomorphic image of an ...
متن کامل